On the asymptotics of some Pearcey-type integrals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 L823
(http://iopscience.iop.org/0305-4470/25/13/010)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.58
The article was downloaded on 01/06/2010 at 16:42

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On the asymptotics of some Pearcey-type integrals

A J E M Janssen
Philips Research Laboratories Eindhoven, 56G0 JA Eindhoven, The Netherlands

Received 29 February 1992

Abstract. In this letter we discuss the asymptotic behaviour of the Pearcey-type integral

$$
I_{\alpha}^{\prime}(X, Y)=2 \int_{0}^{\infty} u^{\alpha+1} \exp \left(\mathrm{i}\left(u^{4}+X u^{2}\right)\right) J_{a}(Y u) \mathrm{d} u
$$

for $-1<\alpha<\frac{5}{2}$, where J_{α} is a Bessel function, as $X \rightarrow \pm \infty, Y$ fixed, as $Y \rightarrow \infty, X$ fixed, and as $Y=\rho\left(\frac{2}{3}|X|\right)^{3 / 2}, X \rightarrow-\infty, \rho$ fixed. The case $\alpha=-\frac{1}{2}$ gives the classical Pearcey integral whose asymptotics has been investigated recently by Kaminski and Paris. In the case $\alpha=0, I_{\alpha}^{\prime}(X, Y)$ as a function of $Y \geqslant 0$ represents the radial part of the impulse-response function describing the image formation in high resolution electron microscopes at normalized defocus X. We use the approach:of Paris by representing $I_{o}^{\prime}(X, Y)$ in terms of Weber parabolic cylinder functions, and we augment this approach by invoking the Chester-Friedman-Ursell method to obtain the leading asymptotics of $I_{a}^{\prime}(X, Y)$ around the caustic $Y^{2}=\left(\frac{2}{3}|X|\right)^{3}, X \rightarrow-\infty$.

In $[5,6]$ the asymptotics of (the analytic continuation to complex variables of) the Pearcey integral

$$
\begin{equation*}
P^{\prime}(X, Y)=2 \int_{0}^{\infty} \exp \left(\mathrm{i}\left(u^{4}+X u^{2}\right)\right) \cos Y u \mathrm{~d} u \tag{1}
\end{equation*}
$$

is presented. The Pearcey integral occurs at many places in the physics literature, especially where a short-wavelength description of the phenomena is desired; we refer to $[3,5,6]$ and the references therein for surveys of existing literature on Pearcey's integral. In a recent study on the image formation in high resolution electron microscopes [4], an important role is played by the integral

$$
\begin{equation*}
I^{\prime}(X, Y)=2 \int_{0}^{\infty} \exp \left(\mathrm{i}\left(u^{4}+\lambda u^{2}\right)\right) J_{0}(Y u) u \mathrm{~d} i u \tag{2}
\end{equation*}
$$

where J_{0} is the Bessel function of order 0 . Indeed, in the terminology of [4], $I^{\prime}(X, \cdot)$ represents the radial part of the (undamped) impulse-response function at defocus X. Interestingly, in the hypothetical case of one-dimensional microscopy, the role of $I^{\prime}(X, \cdot)$ would be taken over by $P^{\prime}(X, \cdot)$ in (1).

In this letter we are interested, more generally, in the asymptotics of the integral

$$
\begin{equation*}
I_{\alpha}^{\prime}(X, Y)=2 \int_{0}^{\infty} \exp \left(\mathrm{i}\left(u^{4}+X u^{2}\right)\right) J_{\alpha}(Y u) u^{\alpha+1} \mathrm{~d} u \tag{3}
\end{equation*}
$$

with $-1<\alpha<\frac{5}{2}$, where J_{α} is the Bessel function of order α. For $\alpha=0$ we obtain (2), and we have

$$
\begin{equation*}
P^{\prime}(X, Y)=\sqrt{\frac{1}{2} \pi Y} I_{-1 / 2}^{\prime}(X, Y) \tag{4}
\end{equation*}
$$

It turns out that we can mimic the arguments of Paris in [6] for obtaining the asymptotics of $P^{\prime}(X, Y)$ to a very large extent. To explain this, we note that with $x=X \exp \left(-\frac{1}{4} \pi \mathrm{i}\right), y=Y \exp \left(\frac{1}{8} \pi \mathrm{i}\right)$ we have

$$
\begin{equation*}
I_{\alpha}^{\prime}(X, Y)=2 \exp \left[\frac{1}{8} \pi \mathrm{i}(\alpha+2)\right] \int_{0}^{\infty} J_{\alpha}(y t) \exp \left(-t^{4}-x t^{2}\right) t^{\alpha+1} \mathrm{~d} t=: I_{\alpha}(x, y) \tag{5}
\end{equation*}
$$

and that we have for $y \neq 0$ the generalized Paris integral representation, see $[6,(2.6)]$

$$
\begin{align*}
I_{\alpha}(x, y)= & \exp \left[\frac{1}{8} \pi \mathrm{i}(\alpha+2)\right] 2^{-3 \alpha / 2-1 / 2} y^{\alpha} \mathrm{e}^{x^{2} / 8} \\
& \times \frac{1}{2 \pi \mathrm{i}} \int_{C} \Gamma(s) D_{s-\alpha-1}\left(\frac{x}{\sqrt{2}}\right)\left(\frac{y^{2}}{4 \sqrt{2}}\right)^{-s} \mathrm{~d} s . \tag{6}
\end{align*}
$$

Here C is a loop starting and finishing at $-\infty$ and encircling the origin in positive sense, and D_{ν} is the (analytic continuation to all $\nu \in \mathbb{C}$ of the) parabolic cylinder function admitting for $\operatorname{Re} \nu<1$ the integral representation

$$
\begin{equation*}
D_{v}(z)=\frac{\mathrm{e}^{-z^{2} / 4}}{\Gamma(-\nu)} \int_{0}^{\infty} \exp \left(-\frac{1}{2} \tau^{2}-z \tau\right) \tau^{-\nu-1} \mathrm{~d} \tau \tag{7}
\end{equation*}
$$

This enables us to derive the asymptotics of $I_{\alpha}(x, y)$ when $|x| \rightarrow \infty, y$ fixed and when $|y| \rightarrow \infty, x$ fixed.

In [5] Kaminski determines the asymptotics of $P^{\prime}(X, Y)$ near the caustic $Y^{2}=$ $\frac{2}{3}|X|^{3}, X \rightarrow-\infty$, by using directly the integral representation (1) together with the method of Chester, Friedman and Ursell (CFU-method), see [1, ch 9] and [2], for the asymptotics of integrals with two nearly coalescing saddle points. The asymptotics of $P^{\prime}(X, Y)$ exactly at the caustic $Y=\left(\frac{2}{3}|X|\right)^{3 / 2}, X \rightarrow-\infty$, is also determined by Paris in [6, section 6], as a check of the validity of his integral representation approach. However, for our case, the direct method of Kaminski is not applicable, and we must augment Paris' arguments of [6, section 6], by an appeal to the cFumethod to obtain the required asymptotics near the caustic. Doing so, we obtain the leading asymptotics for $I_{\alpha}^{\prime}(X, Y)$ near the caustic (and not a full asymptotic expansion as Kaminski obtains for $P^{\prime}(X, Y)$).

We shall now present our main results, and then indicate how these results can be proved by using Paris' arguments and extensions thereof. Although we could present
the asymptotics of $I_{\alpha}(x, y)$ when $|x| \rightarrow \infty$ or $|y| \rightarrow \infty$ for general complex x, y (just as Paris does for his $P(x, y))$, we restrict to $x=X \exp \left(-\frac{1}{4} \pi \mathrm{i}\right), y=Y \exp \left(\frac{1}{8} \pi \mathrm{i}\right)$ with real X and $Y>0$. We thus get

$$
\begin{equation*}
I_{\alpha}^{\prime}(X, Y) \sim \frac{\mathrm{i}}{X}\left(\frac{\mathrm{i} Y}{2 X}\right)^{\alpha} \exp \left(\frac{-\mathrm{i} Y^{2}}{4 X}\right) \sum_{m=0}^{\infty} \frac{(2 m)!}{m!\left(\mathrm{i} X^{2}\right)^{m}} L_{2 m}^{(\alpha)}\left(\frac{\mathrm{i} Y^{2}}{4 X}\right) \tag{8}
\end{equation*}
$$

as $X \rightarrow+\infty, Y>0$, and

$$
\begin{align*}
I_{\alpha}^{\prime}(X, Y) \sim & \frac{\mathrm{i}}{X}\left(\frac{\mathrm{i} Y}{2 X}\right)^{\alpha} \exp \left(\frac{-\mathrm{i} Y^{2}}{4 X}\right) \sum_{m=0}^{\infty} \frac{(2 m)!}{m!\left(\mathrm{i} X^{2}\right)^{m}} L_{2 m}^{(\alpha)}\left(\frac{\mathrm{i} Y^{2}}{4 X}\right) \\
& +2^{-\alpha / 2} \pi^{1 / 2}(-X)^{\alpha / 2} \exp \left(\frac{1}{4} \pi \mathrm{i}-\frac{1}{4} \mathrm{i} X^{2}\right) \\
& \times \sum_{m=0}^{\infty}\left(\frac{-\mathrm{i} Y^{2}}{8 X^{m}}\right)^{m} \frac{1}{m!} J_{\alpha-2 m}\left(Y \sqrt{-\frac{1}{2} X}\right) \tag{9}
\end{align*}
$$

as $X \rightarrow-\infty, Y>0$. Here $L_{2 m}^{(\alpha)}$ is the (2m)th Laguerre polynomial of order α, see [7, section 5.1]. (It is observed here that the function $a_{m}(\chi)$ in [6, (3.4)-(3.6)] equals $(2 m)!L_{2 m}^{(-1 / 2)}(\chi)$.)

Next we have when $X \in \mathbb{R}$ is fixed and $W:=\frac{1}{4} Y \rightarrow+\infty$

$$
\begin{align*}
I_{\alpha}^{\prime}(X, Y) \sim & \frac{W^{\alpha / 3-2 / 3}}{2 \sqrt{3}} \exp \left(-\frac{1}{6} \mathrm{i} X^{2}+\frac{1}{2} \pi \mathrm{i}(1+\alpha)-3 \mathrm{i} W^{4 / 3}+\mathrm{i} X W^{2 / 3}\right) \\
& \times\left\{1+\frac{X\left(\frac{1}{18} \mathrm{i} X^{2}-\alpha\right)}{6 W^{2 / 3}}+\mathrm{O}\left(W^{-4 / 3}\right)\right\}+\frac{W^{\alpha / 3-2 / 3}}{2 \sqrt{3}} \\
& \times \exp \left(-\frac{1}{6} \mathrm{i} X^{2}-\frac{1}{6} \pi \mathrm{i}(1+\alpha)-3 \mathrm{e}^{-\pi \mathrm{i} / 6} W^{4 / 3}-\mathrm{e}^{\pi \mathrm{i} / 6} X W^{2 / 3}\right) \\
& \times\left\{1-\frac{X\left(\frac{1}{18} \mathrm{i} X^{2}-\alpha\right) \mathrm{e}^{\pi \mathrm{i} / 3}}{6 W^{2 / 3}}+\mathrm{O}\left(W^{-4 / 3}\right)\right\} \tag{10}
\end{align*}
$$

Finally, when $\rho>0$ is fixed and $Y=\rho^{1 / 2}\left(\frac{2}{3}|X|\right)^{3 / 2}, X \rightarrow-\infty$, we have

$$
\begin{align*}
I_{\alpha}^{\prime}(X, Y) \sim & \left(\frac{\pi}{\rho}\right)^{1 / 2}\left(\frac{|X|}{6 \rho}\right)^{\alpha / 2} \exp \left[-\frac{1}{4} \pi i(2 \alpha+1)+\delta X^{2}\right] \\
& \times\left[\frac{c_{0}}{|X|^{2 / 3}} \operatorname{Ai}\left(\gamma^{2}|X|^{4 / 3}\right)-\frac{i c_{1}}{|X|^{4 / 3}} \mathrm{Ai}^{\prime}\left(\gamma^{2}|X|^{4 / 3}\right)\right] \\
& +\left(\frac{1}{\rho}\right)^{1 / 2}\left(\frac{2|X|}{3 \rho}\right)^{\alpha / 2} \frac{1}{|\mathrm{X}|} \exp \left[\frac{1}{2} \pi i(\alpha+1)+\varepsilon X^{2}\right] \tag{11}
\end{align*}
$$

where $\delta, \gamma, \varepsilon$ are independent of α and satisly ($\beta=-\frac{2}{3} \ln \rho$)

$$
\begin{align*}
& \delta=\frac{1}{12} \mathrm{i}-\frac{1}{6} \mathrm{i} \beta+\frac{5}{72} \mathrm{i} \beta^{2}+\mathrm{O}\left(\beta^{3}\right) \\
& \gamma=3^{-1 / 3} \mathrm{i}\left(\frac{1}{2} \beta\right)^{1 / 2}+\mathrm{O}\left(\beta^{3 / 2}\right) \tag{12}\\
& \varepsilon=-\frac{2}{3} \mathrm{i}+\frac{1}{3} \mathrm{i} \beta-\frac{5}{36} \mathrm{i} \beta^{2}+\mathrm{O}\left(\beta^{3}\right)
\end{align*}
$$

and

$$
\begin{equation*}
c_{0}=3^{1 / 3}+\mathrm{O}(\beta) \quad c_{1}=\left(\frac{1}{3}+\alpha\right) 3^{2 / 3}+\mathrm{O}\left(\beta^{1 / 2}\right) \tag{13}
\end{equation*}
$$

In particular, we have at the caustic ($\rho=1 ; \beta=\gamma=0$)

$$
\begin{align*}
I_{\alpha}^{\prime}(X, Y) \sim & \frac{\exp \left[-\frac{1}{4} \pi \mathrm{i}(2 \alpha+1)+\frac{1}{12} \mathrm{i} X^{2}\right]}{2 \sqrt{\pi}}\left(\frac{1}{6}|X|\right)^{\alpha / 2} \\
& \times\left[\frac{3^{1 / 6} \Gamma\left(\frac{1}{3}\right)}{|X|^{2 / 3}}+\frac{3^{5 / 6}\left(\frac{1}{3}+\alpha\right) \Gamma\left(\frac{2}{3}\right)}{|X|^{4 / 3}}\right] \\
& +\left(\frac{2}{3}|X|\right)^{\alpha / 2} \frac{1}{|X|} \exp \left[\frac{1}{2} \pi \mathrm{i}(\alpha+1)-\frac{2}{3} \mathrm{i} X^{2}\right] \tag{14}
\end{align*}
$$

We shall next show that the representation (6) holds. To that end we observe the formulae

$$
\begin{array}{ll}
J_{\alpha}(z)=\left(\frac{1}{2} z\right)^{\alpha} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4} z^{2}\right)^{k}}{k!\Gamma(k+\alpha+1)} & z \in \mathbb{C} \\
J_{\alpha}(z)=O\left(|z|^{-1 / 2} \mathrm{e}^{|\operatorname{Im} m|}\right) & |\arg z|<\pi,|z| \rightarrow \infty \\
J_{\alpha}(u), J_{\alpha}^{\prime}(u), J_{\alpha}^{\prime \prime}(u)=O\left(u^{-1 / 2}\right) & u \rightarrow+\infty . \tag{17}
\end{array}
$$

It then follows that $I_{\alpha}^{\prime}(X, Y)$ is well defined as an improper Riemann integral for $-1<\alpha<\frac{5}{2}$, and that (5) holds (on substituting $u=\mathrm{e}^{\pi \mathrm{i} / 8} t$ and using Jordan's lemma). Next we use (15) with $z=y t$, interchange sum and integral, substitute $v=t^{2}$ in the integral, and obtain

$$
\begin{equation*}
I_{\alpha}(x, y)=\exp \left[\frac{1}{8} \pi \mathrm{i}(\alpha+2)\right]\left(\frac{1}{2} y\right)^{\alpha} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4} y^{2}\right)^{k}}{k!\Gamma(\alpha+k+1)} \int_{0}^{\infty} \mathrm{e}^{-v^{2}-x v} v^{k+\alpha} \mathrm{d} v \tag{18}
\end{equation*}
$$

Then we use (7) and the fact that $\Gamma(s)$ has poles of order one at $s=-k=0,-1, \ldots$ with residues $(-1)^{k} / k$! to obtain (6). In (6) the contour C does not need to lie in Re $s<\alpha+1$, as would be the case when (7) were used, since $D_{\nu}(z)$ extends to an entire function of ν.

We next show how the asymptotic expansion (8) can be derived; note that $\arg (x)=-\frac{1}{4} \pi$ since $x=X \exp \left(-\frac{1}{4} \pi i\right), X>0$. Proceeding in the same (formal) way as in [6, section $3(a)$], we insert the expansion

$$
\begin{align*}
& D_{s-\alpha-1}\left(\frac{x}{\sqrt{2}}\right) \\
& \quad \sim \exp \left(-\frac{1}{8} x^{2}\right)\left(\frac{x}{\sqrt{2}}\right)^{s-\alpha-1} \sum_{m=0}^{\infty} \frac{(s-\alpha-1) \ldots(s-\alpha-2 m)}{m!x^{2 m}}(-1)^{m} \\
& \quad|\arg (x)|<\frac{1}{2} \pi \tag{19}
\end{align*}
$$

into (6), and obtain
$I_{\alpha}(x, y) \sim \exp \left[\frac{1}{\mathrm{~B}} \pi \mathrm{i}(\alpha+2)\right]\left(\frac{1}{2} y\right)^{\alpha} x^{-\alpha-1} \sum_{m=0}^{\infty} \frac{(-1)^{m} b_{m}\left(y^{2} / 4 x\right)}{m!x^{2 m}}$.

Here

$$
\begin{align*}
b_{m}(\chi) & =\frac{1}{2 \pi \mathrm{i}} \int_{C} \chi^{-s} \Gamma(s)(s-\alpha-1) \ldots(s-\alpha-2 m) \mathrm{d} s \\
& =\sum_{l=0}^{\infty} \frac{(-\chi)^{l}}{l!}(l+\alpha+2 m) \ldots(l+\alpha+1)=(2 m)!\mathrm{e}^{-\chi} L_{2 m}^{(\alpha)}(\chi) \tag{21}
\end{align*}
$$

From this (8) follows.
Similarly, when $x=X \exp \left(-\frac{1}{4} \pi i\right), X<0$ (so that $\arg (x)=\frac{3}{4} \pi$), we use
$D_{\nu}(z)=\mathrm{e}^{\pi \mathrm{i} \nu} D_{\nu}(-z)+\frac{\mathrm{i}(2 \pi)^{1 / 2}}{\Gamma(-\nu)} \mathrm{e}^{\pi \mathrm{i} \nu / 2} D_{-\nu-1}(-\mathrm{i} z) \quad z \in \mathbb{C}$
together with (6), to obtain

$$
\begin{align*}
I_{\alpha}(x, y)=- & \exp \left(-\frac{3}{2} \pi \mathrm{i} \alpha\right) I_{\alpha}(-x, \mathrm{i} y) \\
& +\exp \left[\frac{1}{8} \pi \mathrm{i}(\alpha+2)+\frac{1}{8} x^{2}\right] 2^{-(3 \alpha / 2)-1 / 2} y^{\alpha} I_{2, \alpha}(x, y) \tag{23}
\end{align*}
$$

where

$$
\begin{align*}
I_{2, \alpha}(x, y)= & \frac{(2 \pi)^{1 / 2}}{2 \pi \mathrm{i}} \exp \left(-\frac{1}{2} \pi \mathrm{i} \alpha\right) \\
& \times \int_{C} \frac{\Gamma(s)}{\Gamma(-s+\alpha+1)} D_{-s+\alpha}\left(\frac{-\mathrm{i} x}{\sqrt{2}}\right)\left(\frac{-\mathrm{i} y^{2}}{4 \sqrt{2}}\right)^{-s} \mathrm{~d} s \tag{24}
\end{align*}
$$

For the first term at the right-hand side of (23) we can use (8); for the second term we use (19), and obtain

$$
\begin{align*}
I_{2, \alpha}(x, y) \sim & (2 \pi)^{1 / 2}\left(\frac{-x}{\sqrt{2}}\right)^{\alpha} \exp \left(\frac{1}{8} x^{2}\right) \sum_{m=0}^{\infty} \frac{1}{m!x^{2 m}} \\
& \times \frac{1}{2 \pi \mathrm{i}} \int_{C}\left(-\frac{1}{8} x y^{2}\right)^{-s} \frac{\Gamma(s)}{\Gamma(-s+\alpha-2 m+1)} \mathrm{d} s \tag{25}
\end{align*}
$$

Here we have used that $\Gamma(-x+1)=x(x+1) \cdots(x+2 m-1) \Gamma(-x-2 m+1)$. Finally, (9) follows by taking $\xi=y\left(-\frac{1}{2} x\right)^{1 / 2}$ in the identity

$$
\begin{equation*}
\left(\frac{1}{2} \xi\right)^{2 m-\alpha} J_{\alpha-2 m}(\xi)=\frac{1}{2 \pi \mathrm{i}} \int_{C}\left(\frac{1}{2} \xi\right)^{-2 s} \frac{\Gamma(s)}{\Gamma(-s+\alpha-2 m+1)} \mathrm{d} s \tag{26}
\end{equation*}
$$

We observe that the derivations just given can be shown to yield true asymptotic series by using the methods of [6, section 4]; in fact, such a thing is implicitly stated in [6, middle of p 422], about the asymptotics of $P^{(n)}(x, y)$, i.e. the case that $\alpha=n+\frac{1}{2}$.

We next turn to the derivation of (10). This can be done as in [6, section 5]; we just show some intermediate steps. After replacing $s-\alpha-1$ by $s-\frac{1}{2}$ in the integral
at the right-hand side of (6) (so that we can conveniently use [6, equation (5.2)]), we obtain as in [6]

$$
\begin{align*}
I_{\alpha}(x, y)= & \exp \left[\frac{1}{8} \pi \mathrm{i}(\alpha+2)+\frac{1}{8} x^{2}\right] 2^{\alpha+1 / 4} \pi^{-1 / 2} y^{-\alpha-1} \\
& \times\left\{\exp \left(-\frac{1}{4} \pi \mathrm{i}\right) I_{+, \alpha}(x, y)+\exp \left(\frac{1}{4} \pi \mathrm{i}\right) I_{-, \alpha}(x, y)\right\} \tag{27}
\end{align*}
$$

where
$I_{ \pm, \alpha}(x, y)=\frac{1}{2 \pi \mathrm{i}} \int_{C} \Gamma\left(s+\frac{1}{2}\right) \Gamma\left(s+\alpha+\frac{\mathrm{t}}{2}\right) D_{-s-1 / 2}\left(\pm \frac{\mathrm{i} x}{\sqrt{2}}\right)\left(\mp \frac{\mathrm{i} y^{2}}{4 \sqrt{2}}\right)^{-s} \mathrm{~d} s$.

Using [6, equation (5.2)] and the result
$\frac{\Gamma\left(s+\frac{1}{2}\right) \Gamma\left(s+\alpha+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2} s+\frac{3}{4}\right)}=\Gamma\left(\frac{3}{2} s+\frac{1}{4}+\alpha\right)\left(\frac{3^{3 / 2}}{4}\right)^{-s} 2^{\alpha} 3^{-(\alpha-1 / 4)}\left[1+\mathrm{O}\left(\frac{1}{s}\right)\right]$
we obtain

$$
\begin{equation*}
I_{ \pm, \alpha}(x, y)=\frac{B_{ \pm}}{2 \pi \mathrm{i}} \int_{C} \Gamma(t) Z_{ \pm}^{-t}\left(1 \pm A t^{-1 / 2}+\mathrm{O}\left(t^{-1}\right)\right) \exp (\mp \mathrm{i} x \sqrt{t / 3}) \mathrm{d} t \tag{30}
\end{equation*}
$$

where

$$
\begin{align*}
& A=\frac{i x}{2 \sqrt{3}}\left(\alpha+\frac{1}{4}+\frac{x^{2}}{16}\right) \\
& B_{ \pm}=\pi^{1 / 2} 2^{-5 \alpha / 3+1 / 12} 3^{-1 / 2} y^{4 \alpha / 3+1 / 3} \exp \left[\mp \frac{1}{6} \pi \mathrm{i}\left(2 \alpha+\frac{1}{2}\right)\right] \tag{31}\\
& Z_{ \pm}=3 \exp \left(\mp \frac{1}{3} \pi \mathrm{i}\right)\left(\frac{1}{4} y\right)^{4 / 3}
\end{align*}
$$

With the aid of the lemma in [6, section 5], we then get

$$
\begin{equation*}
I_{\alpha}(x, y)=T_{+, \alpha}(x, y)+T_{-, \alpha}(x, y) \tag{32}
\end{equation*}
$$

where, with $w=\frac{1}{4} y$,

$$
\begin{align*}
T_{+, \alpha}(x, y)= & \frac{w^{\alpha / 3-2 / 3}}{2 \sqrt{3}} \exp \left(-\frac{1}{12} \pi \mathrm{i}-\frac{5}{24} \pi \mathrm{i} \alpha+\frac{1}{6} x^{2}-3 \mathrm{e}^{-\pi \mathrm{i} / 3} w^{4 / 3}-\mathrm{i} x \mathrm{e}^{-\pi \mathrm{i} / 6} w^{2 / 3}\right) \\
& \times\left\{1-\frac{\left(\alpha+\frac{1}{18} x^{2}\right) x}{6 w^{2 / 3}} \exp \left(-\frac{1}{3} \pi \mathrm{i}\right)+\mathrm{O}\left(w^{-4 / 3}\right)\right\} \tag{33}\\
T_{-, \alpha}(x, y)= & \frac{w^{\alpha / 3-2 / 3}}{2 \sqrt{3}} \exp \left(\frac{7}{12} \pi \mathrm{i}+\frac{11}{24} \pi \mathrm{i} \alpha+\frac{1}{6} x^{2}-3 \mathrm{e}^{\pi \mathrm{i} / 3} w^{4 / 3}+\mathrm{i} x \mathrm{e}^{\pi \mathrm{i} / 6} w^{2 / 3}\right) \\
& \times\left\{1-\frac{\left(\alpha+\frac{1}{18} x^{2}\right) x}{6 w^{2 / 3}} \exp \left(\frac{1}{3} \pi \mathrm{i}\right)+\mathrm{O}\left(w^{-4 / 3}\right)\right\} \tag{34}
\end{align*}
$$

From this (10) follows on setting $x=X \exp \left(-\frac{1}{4} \pi \mathrm{i}\right), y=Y \exp \left(\frac{1}{8} \pi \mathrm{i}\right)$.

We finally show the main steps in deriving (11). When we follow the steps (6.1)(6.13) in [6], we get $\left(Y=\rho^{1 / 2}\left(\frac{2}{3}|X|\right)^{3 / 2}\right)$

$$
\begin{equation*}
I_{\alpha}^{\prime}(X, Y)=\exp \left[\frac{1}{4} \pi \mathrm{i}(\alpha+1)-\frac{1}{8} \mathrm{i} X^{2}\right] 2^{-3 \alpha / 2-1 / 2} Y^{\alpha}\left\{I_{1, \alpha}^{\prime}(X, Y)+I_{2, \alpha}^{\prime}(X, Y)\right\} \tag{35}
\end{equation*}
$$

where

$$
\begin{align*}
I_{1, \alpha}^{\prime}(X, Y) \sim & -3^{3 / 4+2 \alpha} \pi^{1 / 2} 2^{1 / 2+\alpha / 2} \rho^{-1 / 2-\alpha}|X|^{-\alpha} \exp \left(\frac{3}{8} \pi \mathrm{i}-\frac{1}{4} \pi \mathrm{i} \alpha\right) \\
& \times \frac{1}{2 \pi \mathrm{i}} \int_{C} \frac{\tau^{-1 / 4+\alpha}}{\left(t^{2}-1\right)^{1 / 4}} \exp \left(\frac{2}{3} \pi \mathrm{i} \tau X^{2}\right) \\
& \times\left\{\exp \left[X^{2} f_{-}(\tau, \beta)\right]-\mathrm{i} \exp \left[X^{2} f_{+}(\tau, \beta)\right]\right\} \mathrm{d} \tau \tag{36}\\
I_{2, \alpha}^{\prime}(X, Y) \sim & 3^{3 / 4+2 \alpha} \pi^{1 / 2} 2^{1 / 2+\alpha / 2} \rho^{-1 / 2-\alpha}|X|^{-\alpha} \exp \left(-\frac{1}{8} \pi \mathrm{i}-\frac{1}{4} \pi \mathrm{i} \alpha\right) \\
& \times \frac{1}{2 \pi \mathrm{i}} \int_{C} \frac{\tau^{-1 / 4+\alpha}}{\left(t^{2}-1\right)^{1 / 4}} \exp \left[X^{2} f_{+}(\tau, \beta)\right] \\
& \times\left\{\exp ^{2}\left(\frac{2}{3} \pi \mathrm{i} \tau X^{2}\right)+\exp \left(-\frac{2}{3} \pi \mathrm{i} \tau X^{2}\right)\right\} \mathrm{d} \tau . \tag{37}
\end{align*}
$$

Here $t=\frac{1}{4} 3^{1 / 2} \mathrm{e}^{-\pi i / 4} \tau^{-1 / 2}$, and

$$
\begin{equation*}
f_{ \pm}(\tau, \beta)=f_{ \pm}(\tau)+\beta \tau \quad \beta=-\frac{2}{3} \ln \rho \tag{38}
\end{equation*}
$$

with $f_{ \pm}$given in [$\left.6,(6.13)\right]$. The main contributions to the above integrals come from saddle points; these are (in the t-plane) among the roots of

$$
\begin{equation*}
\frac{1}{2}\left(\frac{4}{3} t\right)^{3}\left(t \pm \sqrt{t^{2}-1}\right)=\rho^{-1} \tag{39}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{1}{4} \rho^{2}\left(\frac{4}{3} t\right)^{6}-\rho t\left(\frac{4}{3} t\right)^{3}+1=0 \tag{40}
\end{equation*}
$$

This equation has, for β close to 0 , simple roots near $t= \pm \frac{3}{4} \mathrm{i}$ and two pairs of nearly coalescing roots near $t= \pm 3 / 2 \sqrt{2}$; as in [6] only the roots near $t=3 / 2 \sqrt{2}$ (i.e. $\tau=-\frac{1}{6} \mathrm{i}$) and the roots near $t=-\frac{3}{4} \mathrm{i}$ (i.e. $\tau=\frac{1}{3} \mathrm{i}$) yield saddle points contributing to the integrals. As a consequence, the leading asymptotics of $I_{1, \alpha}^{\prime}$ is determined by the integral
$L_{1, \alpha}\left(X^{2} ; \beta\right)=\frac{1}{2 \pi} \int_{C} \frac{\tau^{-1 / 4+\alpha}}{\left(t^{2}-1\right)^{1 / 4}} \exp \left[\frac{2}{3} \pi \mathrm{i} X^{2} \tau+X^{2} f_{-}(\tau, \beta)\right] \mathrm{d} \beta$
with nearly coalescing saddle points near $\tau_{1}=-\frac{1}{6} \mathrm{i}$, and the leading asymptotics of $I_{2, \alpha}^{\prime}$ is determined by the integral
$L_{2, \alpha}\left(X^{2} ; \beta\right)=\frac{1}{2 \pi \mathrm{i}} \int_{C} \frac{\tau^{-1 / 4+\alpha}}{\left(t^{2}-1\right)^{1 / 4}} \exp \left[-\frac{2}{3} \pi \mathrm{i} X^{2} \tau+X^{2} f_{+}(\tau, \beta)\right] \mathrm{d} \tau$
with saddle point near $\tau_{2}=\frac{1}{3} \mathrm{i}$.
For $L_{1, \alpha}$ we must use the cFu method for which we follow the recipe given in [1, section 9.2]. We write

$$
\begin{equation*}
L_{1, \alpha}\left(X^{2} ; \beta\right)=\frac{1}{2 \pi \mathrm{i}} \int_{C} G_{\alpha}(\tau) \exp \left[X^{2} F_{-}(\tau, \beta)\right] \mathrm{d} \tau \tag{43}
\end{equation*}
$$

with

$$
\begin{equation*}
F_{-}(\tau, \beta)=F_{-}(\tau)+\beta \tau \quad G_{\alpha}(\tau)=\frac{\tau^{-(1 / 4)+\alpha}}{\left(t^{2}-1\right)^{1 / 4}} \tag{44}
\end{equation*}
$$

where $F_{-}(\tau)=f_{-}(\tau)+\frac{2}{3} \pi \mathrm{i} \tau$ as in $[6$, section 6]. Next we introduce a regular variable transformation $\tau(s)$ (with s close to 0) by

$$
\begin{equation*}
F_{-}(\tau(s), \beta)=-\frac{1}{3} s^{3}+\gamma^{2} s+r \tag{45}
\end{equation*}
$$

that should be such that $\tau(\pm \gamma)=\tau_{ \pm}$, with $\tau_{ \pm}$the two zeros of $F^{\prime}(\tau, \beta)$ near τ_{1}. It then follows that

$$
\begin{array}{r}
r=\frac{1}{2}\left(F_{-}\left(\tau_{+}, \beta\right)+F_{-}\left(\tau_{-}, \beta\right)\right)=-\frac{5}{4} \tau_{1}+\tau_{1} \beta-\frac{5}{12} \tau_{1} \beta^{2}+\mathrm{O}\left(\beta^{5 / 2}\right) \\
\frac{4}{3} \gamma^{3}=F_{-}\left(\tau_{+}, \beta\right)-F_{-}\left(\tau_{-}, \beta\right)=\frac{8}{3} \tau_{1}\left(\frac{1}{2} \beta\right)^{3 / 2}+\mathrm{O}\left(\beta^{5 / 2}\right) \tag{47}
\end{array}
$$

the two equalities at the far right-hand sides of (46) and (47) being a consequence of the formulas on the bottom of $[6, p 419]$ and of

$$
\begin{equation*}
\tau_{ \pm}=\tau_{1} \pm \tau_{1}\left(\frac{1}{2} \beta\right)^{1 / 2}-\frac{5}{6} \tau_{1} \beta+\mathrm{O}\left(\beta^{3 / 2}\right) . \tag{48}
\end{equation*}
$$

The argument of γ is to be determined using the device developed after theorem 9.2.1 in [1]; this gives in the present case

$$
\begin{equation*}
\gamma=3^{-1 / 3} \mathbf{i}\left(\frac{1}{2} \beta\right)^{1 / 2}(1+O(\beta)) . \tag{49}
\end{equation*}
$$

The variable transformation $\tau(s)$ is used to bring the contribution to $L_{1, \alpha}$ from the saddle points near τ_{1} into the form

$$
\begin{equation*}
-\frac{1}{2 \pi \mathrm{i}} \int_{C_{1}} G_{\alpha}(\tau(s)) \tau^{\prime}(s) \exp \left[\left(-\frac{1}{3} s^{3}+\gamma^{2} s+r\right) X^{2}\right] \mathrm{d} s \tag{50}
\end{equation*}
$$

where C_{1} is a portion of the Airy contour given in [1, figure 2.5]. The minus sign in (50) is due to the different orientations of $\tau\left(C_{1}\right)$ and C near τ_{1}. It then follows from the theory in [1] that the leading asymptotics of $L_{1, \alpha}$ is given as

$$
\begin{equation*}
L_{1, \alpha}\left(X^{2} ; \beta\right) \sim-\exp \left(X^{2} r\right)\left[\frac{a_{0}(\alpha)}{|X|^{2 / 3}} \mathrm{Ai}\left(\gamma^{2}|X|^{4 / 3}\right)+\frac{a_{1}(\alpha)}{|X|^{4 / 3}} \mathrm{Ai}^{\prime}\left(\gamma^{2}|X|^{4 / 3}\right)\right] \tag{51}
\end{equation*}
$$

with

$$
\begin{align*}
& a_{0}(\alpha)=\frac{1}{2}\left[G_{\alpha}\left(\tau_{+}\right) \tau^{\prime}(\gamma)+G_{\alpha}\left(\tau_{-}\right) \tau^{\prime}(-\gamma)\right]=3^{-5 / 12} \mathrm{e}^{9 \pi \mathrm{i} / 8} \tau_{1}^{\alpha}+\mathrm{O}(\beta) \tag{52}\\
& a_{1}(\alpha)=\frac{1}{2 \gamma}\left[G_{\alpha}\left(\tau_{+}\right) \tau^{\prime}(\gamma)-G_{\alpha}\left(\tau_{-}\right) \tau^{\prime}(-\gamma)\right]=\left(\frac{1}{3}+\alpha\right) 3^{-1 / 12} \mathrm{e}^{5 \pi \mathrm{i} / 8} \tau_{1}^{\alpha}+\mathrm{O}\left(\beta^{1 / 2}\right) \tag{53}
\end{align*}
$$

This then completes the analysis of $L_{1, \alpha}$.
The analysis of $L_{2, \alpha}$ requires a much simpler appeal to the steepest descent method for a saddle point near $\tau_{2}=\frac{1}{3}$ i. To that end we set

$$
\begin{equation*}
F_{+}(\tau, \beta)=F_{+}(\tau)+\beta \tau \tag{54}
\end{equation*}
$$

and we let $\tau_{2}(\beta)$ be the zero of $F_{+}^{\prime}(\tau, \beta)$ near τ_{2}. Using the formulae $F_{+}\left(\tau_{2}\right)=$ $-\frac{13}{8} \tau_{2}, F_{+}^{\prime \prime}\left(\tau_{2}\right)=6 / 5 \tau_{2}$, we find that

$$
\begin{equation*}
\tau_{2}(\beta)=\tau_{2}-\frac{5}{6} \beta \tau_{2}+O\left(\beta^{2}\right) \tag{55}
\end{equation*}
$$

while the steepest descent paths have directions $\frac{3}{4} \pi+O(\beta),-\frac{1}{4} \pi+O(\beta)$. Hence we get

$$
\begin{equation*}
L_{2, \alpha}\left(X^{2} ; \beta\right) \sim \frac{b_{0}(\alpha)}{|X|} \exp \left(X^{2} v\right) \tag{56}
\end{equation*}
$$

where

$$
\begin{align*}
b_{0}(\alpha) & =\frac{1}{2 \pi \mathrm{i}} G_{\alpha}\left(\tau_{2}(\beta)\right)\left|\frac{2 \pi}{F_{+}^{\prime \prime}\left(\tau_{2}(\beta), \beta\right)}\right|^{1 / 2} \exp \left[\frac{3}{4} \pi \mathrm{i}+\mathrm{O}(\beta)\right] \\
& =\pi^{-1 / 2} 3^{-3 / 4-\alpha} \exp \left(\frac{3}{8} \pi \mathrm{i}+\frac{1}{2} \pi \mathrm{i} \alpha\right)+\mathrm{O}(\beta) \tag{57}
\end{align*}
$$

and

$$
\begin{equation*}
v=F_{+}\left(\tau_{2}(\beta), \beta\right)=-\frac{13}{24} \mathrm{i}+\frac{1}{3} \mathrm{i} \beta-\frac{5}{36} \mathrm{i} \beta^{2}+\mathrm{O}\left(\beta^{3}\right) \tag{58}
\end{equation*}
$$

This completes the analysis of $L_{2, \alpha}$, and putting all results together we obtain expressions (11)-(13).

The author thanks Dr R B Paris, who independently noticed formula (6), for a fruitful discussion on the subject of this letter.

References

[1] Bleistein N and Handelsman R A 1975 Asymptotic Expansions of Integrals (New York: Holt, Rinehart and Winston)
[2] Chester C, Friedman B and Ursell F 1957 An extension of the method of steepest descents Proc. Camb. Phil Soc. 53 599-611
[3] Connor J N L and Curtis P R 1982 A method for the numerical evaluation of the oscillatory integrals associated with the cuspoid catastrophes: application to Pearcey's integral and its derivatives J. Phys. A: Math. Gen. 15 1179-90
[4] Coene W and Janssen A J E M 1992 On image delocalisation in HREM using a highly coherent Geld emission gun Scanning Microscopy, Proc 10th Pfeffcrkom Conf. on Signal and Image Processing in Microscopy and Microanalysis (Cambridge, September 1991)
[5] Kaminski D 1989 Asymptotic expansion of the Pearcey integral near the caustic SLAM J. Math. Anal 20 987-1005
[6] Paris R B 1991 The asymptotic behaviour of Pearcey's integral for complex variables Proc. R. Soc. A 432 391-426
[7] Szegö G 1975 Orthogonal Polynomials (Providence, RI: American Mathematical Society) 4th edn

