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LETTER TO THE EDITOR

On the asymptotics of some Pearcey-type integrals

A J E M Janssen
Philips Research Laboratories Eindhoven, 5660 JA Eindhoven, The Netherands

Received 29 February 1992

Abstract. In this letter we discuss the asymptotic behaviour of the Pearcey-type integral
o0
I(X,Y) =2 [ua'“ exp(i(u* + Xu?)) Ja(Yu)du
]

for -1 < a < &, where J, is a Bessel function, as X — too, ¥V ﬁxed asY — o0, X
fixed, and as ¥ = p(%le)afz, X — —oo, pfixed. The case o = -— gives the classical
Pearcey integral whose asymplotics has been investigated recently by l(ammskl and Paris.
In the case o = 0, 7L (X, Y’) as a function of ¥ > 0 represents the radial part of the
impulse-response function describing the image formation in high resolution electron
micrescopes al normalized defocus X. We use the approach:of Paris by representing
IL(X,Y) in werms of Webcer parabolic cylinder functions, and we augment this approach
by invoking the Chester—Friedman—Unmsell method to obtain the leading asymptotics of
IL{(X,Y}) around the caustic ¥2 = (g—!X!)"’, X — —co.

In [5, 6] the asymptotics of (the analytic continuation to complex variables of) the
Pearcey integral

o0
P{(X,Y)= 2/exp {i(u! + Xu?))cos Yudu 0y
0

is presented. The Pearcey integral occurs at many places in the physics literature,
especially where a short-wavelength description of the phenomena is desired; we
refer o [3, 5, 6] and the references therein for surveys of existing literature on
Pearcey’s integral. In a recent study on the image formation in high resolution
electron microscopes [4], an important role is played by the integral

I'x,v)= /exp( (2 + Nu2)) Jp(Vu)udi )
0

where J;, is the Bessel function of order 0. Indeced, in the terminology of [4], I'( X, )
represents the radial part of the (undamped) impulse-response function at defocus
X. Interestingly, in the hypothetical case of one-dimensional microscopy, the role of
I'(X,-) would be taken over by P'(X,-) in (1).
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L824 Letter to the Editor

In this letter we are interested, more generally, in the asymptotics of the integral
[= o]
I;(X,Y)=‘2/exp(i(u4+Xu2))J0(Yu)u°’+1du {3)
0

with -1 < o < &, where J,, is the Bessel function of order . For o = 0 we obtain
(2), and we have

P'(X.Y) = /in¥Y I ,(X,Y). (@)

It turns out that we can mimic the arguments of Paris in [6] for obtaining the
asymptotics of P/(X,Y) to a very large extent. To explain this, we note that with
r = Xexp(—}ini), y = Y exp(}=i) we have

oo

IL(X,Y)=2exp[iri(a+ ‘2)]] J (ytyexp(—t* —zt®)t* M dt =: I (z.y) (5)
0

and that we have for y # 0 the generalized Paris integral representation, see [6, {2.6})]
— : —3a/2-1/2 278
I(z,y) = exp[Lmi(a + 2)|27%/271/2 yoe*/

T

x 2_1?1] F(s)Ds_a_l(-—ﬁ) (Z%)_ads . ©)
(&)

Here C is a loop starting and finishing at —oo and encircling the origin in positive
sense, and D, is the (analytic continuation to all v € C of the) parabolic cylinder
function admitting for Re v < 1 the integral representation

—z%/4 °
D, (z)= i. = [exp(-—%'rz——:'r)'r"’_ld‘r. (N
g {—UJ‘({ 2 VU

This enables us to derive the asymptotics of [, (z,y) when || — o, y fixed and
when |y| — oo, z fixed.

In [5] Kaminski determines the asymptotics of P/(X,Y’) near the caustic ¥? =
2|X|3, X — —oo, by using directly the integral representation (1) together with the
method of Chester, Friedman and Ursell (CFu-method), see [1, ch 9] and (2], for the
asymptotics of integrals with two nearly coalescing saddle points. The asymptotics
of P'(X,Y) exactly at the caustic ¥ = (3|X[)¥/2, X — ~oo, is also determined
by Paris in [6, section 6], as a check of the validity of his integral representation
approach. However, for our case, the direct method of Kaminski is not applicable,
and we must augment Paris’ arguments of [6, section 6], by an appeal to the CFU-
method to obfain the required asympiotics near the caustic. Doing 0, we obtain
the leading asymptotics for I/ (X,Y) near the caustic (and not a full asymptotic
expansion as Kaminski obtains for P'(X,Y)).

We shall now present our main results, and then indicate how these results can be
proved by using Paris’ arguments and extensions thereof. Although we could present
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the asymptotics of I, (z,y) when |2] — oo or |y| — oo for general complex z, y (just
as Paris does for hlS P(z,y)), we restrict to z = Xexp(~imi), y = Y exp(§wi)
with real X and Y > 0. We thus get

LYY~ 5 (55) Tex (:}\fﬂ) i mfizl‘)m L(a)(t&) ®

as X — oo, Y > 0, and
]

, P iy \° LY & 2m) (m(iY?
nx )~ (5¢) e (Gx )mz o5 (5

4 2-o/? x/2(— X))/ exp(:lt.ﬂ-i - %i)\’"’)

« 3 (5" g nan (Y VEX) ©)

m=0

as X — —o0, Y > 0. Here L(“} is the (2m)th Laguerre polynomlal of order «a,
see [7, section 5.1]. (It is observed here that the function a (x) in [6, (3.4)-(3.6)]
equals (2m)'L( 1/2 )( )

Next we have when X € R is fixed and W := 1Y — +co

We/3-2/3
I'(X, N exp(_lix'-’ + Lai(1+4 a) - 3iW4/2 4 iXW2/3)
(181 X2 ) _ Wald-2/3
14 2Nass T woasyl g 2T
< { + IS oW | 4 S

X exp (- LUX? - Lri(1 + ) - 3e” TS W3 _emi/® me)

,_ X(EX? — ajers?
17 6W?2/3

+ O(W““/a)}. (10)

Finally, when p > 0 is fixed and Y = p'/2(2|X[)3/2, X — -co, we have
]/2 IXI 0/2
I{x,y)~ ( ) (6 ) exp{-—}t—'rri(?a-l— 1)+ 6X7
o o

Cy 24 14/3y _ C14/3
X [I‘Xlzﬂs Al(ﬁy !‘\} ) |\|4/3 Al (7 IA! )]

1 1/2 2|X]| af2 1 L "
+<;) ( 3, ) l—ﬁexp[ smifa+ 1)+ eX7] (1)

where &, v, £ are independent of « and satisfy {3 = ~2In p)

%. ——nﬂ+ 2162 + 0(8%)
L2+ 0(5%7) (12)
-—-1+-1ﬁ- %i0* + 0(43%)

5
'Y
€
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and

cp =334+ 0(3) ey = (3 + @)3¥° 4 0(8'/?). (13)
In particular, we have at the caustic (p = 1; 3 = v = 0)

exp[—ini(2a +1) + 1.,1)("“']

, of2
L(X,Y) ~ N (s1XD)
31803 | 3% + o)I(d)
| X273 | X128
o IO 1 . o
+ (5]X]) /z-l-‘-)-(-—lexp{%m(a+l)- %1A2]. (14)

We shall next show that the representation (6) holds. To that end we observe the
formulae

a 529"
J(2)=(42) Zk'l‘k+a+1) zeC (15)
Jo(2) = O(|z|/2 el ™1 larg z| < 7, [2] = 00 (16)
Jo(u), Jg(u), J5(u) = O(u=17?) u — +oo. ' (17)

It then follows that I.,(X,Y) is well defined as an improper Riemann integral for
-1 < a < %, and that (5) holds (on substituting u = e™/3¢ and using Jordan’s
lemma). Next we use (15) with z = yt, interchange sum and integral, substitute
v = t% in the integral, and obtain

o 1.k ,
ILiz,y)= e)cp[%wi(a+2)](%y)" E x| (=3v) e”V T pkta gy, (18)
k=0

T(a+k+1)
Q

Then we use (7) and the fact that I'(s) has poles of order one at s = ~k = 0, —1,
with residues (—1)%/&! to obtain (6). in (6) the contour C does not need to he in
Res < a + 1, as would be the case when (7) were used, since D (z) extends to an
entire function of v.

We next show how the asymptonc expansion (8) can be derived; note that

arg(r) = —ix since ¢ = X exp{—3=i), X > 0. Proceeding in the same (formal)
way as in [6, sectlon 3(a)], we insert the expansion
xr
D =
(3
g—a—-1 oo
o f T (s—a—1)...(s— a-2m) "
~ exp(-3") (%) = (-1)
8 V2 mz;-:u m!e
|arg(z)| < g (19)
into (6), and obtain
a  ,=-a—1 ( 1) bm(y2/4r)
I(z,y) ~exp[} ri(a+2)](dy)* = Z Tatn : (20)

m=0
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Here
bm(x)=§1—j T T(s)s—a—-1)...(s—a—2m)ds
c
=Z( l’,‘) (4+a+2m)...(l+a+1)=(2m) e * L{(x). 1)

i
(=

From this (8) follows.
Similarly, when 2 = X exp(—-}i‘ni), X < 0 (s0 that arg{z) = %n), We use

i(2m)/?

Dv(z) = efiva("'z) + W

e"ITD__(~iz) zeC (22)

together with (6), to obtain

I (z,y) = —exp(—3mia}l (-z,iy)
+explimi(a+ 2) + La?j2=Ga/2-1 2y, (z,y) (23)

where

2,11,)1/2

exp(—Lria)
f F(—sr-i(-sa Ty D-ote (—71*;) (‘}%)—3 ds. 24

For the first term at the right-hand side of (23) we can use (8); for the second term
we use (19), and obtain

I2 a(x y)

o o0
9 - n l
I (2, y) N(QTT)I/”( ) exp(32®) Y ——m
V2 e~ mt z?

1 L on—s ['(s)
X ﬁj(ngmy ) IN-s+a—2m+1) ds. (25)
c

Here we have used that ['(—z+ 1) =z(z+1)-- - (z+2m-1)I(—z-2m +1).
Finally, (9) follows by taking £ = y(—%x}'/? in the identity

1 0 (s
(%E)Zm—aj _gm(f) = E}‘l/(%f)nd T'(-s+ Ot(—--)gﬂl-}- 1)(18. (26)
[

We observe that the derivations just given can be shown to yield true asymptotic
series by using the methods of [6, section 4]; in fact, such a thing is implicitly stated in
[6, middle of p 422], about the asymptotics of P‘")(:c y), i.e, the case that o = n4 1.

We next turn to the derivation of (10). This can be done as in [6 section §};, we
just show some intermediate steps. After replacing s—a—1by s - 3 in the integral
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at the right-hand side of (6) (so that we can conveniently use [6, equation (5.2)]), we
obtain as in [6]

I(z,y) =exp[irila+2)+ %azz]‘z““/" 12yl

x {exp(=gmi)I; ,(z,y) + exp(3mi)I_ (=, y)} @7
where
1 iz iy’ \7°
I o(zy) =5 [ T(s+ Dl(s+a+3) D_,_plt— (:F_'_) ds.
2”‘6-[ : : ( \/§) W
(28)

Using {6, equation (5.2)] and the result

F(s+%)l"(s+a+%) 3 1 3%/ _sr, —(a—1/4) (1)]
= 3 1 o« o 1 o
r(3s+ D F(23+4+°)(4) ’ oG

(29)

we obtain

B
I (z,y) = ﬁfl‘(t)zg(l + At~12 4 o(t71)) exp (Fix /1/3) dt (30)
(&

where

T T 93 4 16
Bi: = q1/29=-50/3+1/129-1/2 y4a/3+1/3 exp[? 'é‘ mi(2a+ %)] (31
Z, =3exp(¥i wi)(%y)"/a.
With the aid of the lemma in [6, section 5], we then get
Ia(:n,y)zT+|a(x,y)+T_‘a(9:,y) (32)

where, with w = 1y,

af3-2/3 - o
Ty alzy) = E"‘;\"']—'é‘"" exp (- Fri- Hrio+ 2’ - Be~ T3y A/3 eI/ 04y/3)
FICION
w/3-2/3 _ .
T (z,y) = E-5--\/-L’_,—exp(%‘n'i + wio + ga? - 3e/31/3 4 jpe™/64,%/3)
12
x {1—%—)—we:<p(%ni)+o(w-4/3)}. (34)

From this (10) follows on setting = = X exp(—j=i), y = ¥ exp(§7i).
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We finally show the main steps in deriving (11). When we follow the steps (6.1)-
(6.13) in [6], we get (Y = p1/2(§|X|)3/2)

I(X,Y) = explimi(a + 1) - §iX?|27%/2-12y (11 (X,Y)+ I} ,(X,Y))

(35)
where
;,a(X’Y) ~ _33/4-&-20.”1/221/24-&/2 p-1/2—cx1XI—aexp(gWi _ %Tria)
1 T-l/‘i-{-tx
X o | o exp(Zmir X?
5o / TEERNE exp($mit X?)
c
x {exp[X2f_(, @) - iexp[ X2/, (7, )]} d7 @36)
Ié,a(X,Y) ~ 33/4+2aw1/221/2+a/2p—1/2—a |X|- exp(—%‘n‘i _ %ﬂ’ia)
1 1.-1/4+a o '
X 5“7;1‘] WEXP[/\ fe(7.8))
c
x {exp(%xir?@) 4+ exp(—%a-ri?-X?)} dr. (37
Here t = 131/2¢-"/4r-1/2 and
fe(r,8) = fu(r)+ BT B=-%Inp (38)

with f, given in [6, (6.13)]. The main contributions to the above integrals come from
saddle points; these are (in the {-plane) among the roots of

g txver~-1) =p! (39)
so that
PG -pt(d*+1=0. (40)

This equation has, for § close to 0, simple roots near ¢ = +&i and wo pairs of nearly
coalescing roots near + = +£3/2+/2; as in [6] only the roots near t = 3/2v2 (ie.
7 = —}i) and the roots near { = —32i (ie. r = li) yield saddle points contributing
to the integrals. As a consequence, the leading asymptotics of /] , is determined by
the integral

?
l,o

5 1 e 1/4+0r o - "
LI’Q(X H ﬂ): .-'?,-?r—l '(—tE—T)]ﬁEX])[ﬁ‘H'L\'T'f-.X f_(T,B)]d,B (41)
C
with nearly coalescing saddle noints near r. = ~1i and the leading asvmntotics of
J & r i 677 & SUgRRApRULLS

I; , is determined by the integral

- i4+o

1 o -
L, (X?; 8) = ‘_2—11'—1] (t—z:-l—)—lﬁeXJ)[—§1r1.\'r+.X2f+(-r,,8)]dT (42)
c
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with saddle point near 7, = £i.
For L, , we must use the CFU method for which we follow the recipe given in
[1, section 9.2]. We write

L1,a(X23 8) = —2—]-;_—[] G,(r)exp[X*F_(r,8)]dr (43)

with
T—(1/4)+a

F(r,8)=F_(7)+ 67 Gulr) = (E-1iA

(44)

where F_(7) = f_(r) + imi7 as in [6, section 6]. Next we introduce a regular
variable transformation 7(s) (with s close to 0) by

F (7(5),8)= -3+ s+ (45)

that should be such that r(+~) = r,, with 7, the two zeros of F'(r,8) near 7. It
then follows that

=3 (F_(r, B) + FL(r_. @) = —fr + B — Hm 6 + O(8°%) (45)
570 = F_(r,8) ~ F_(7.,8) = §n1(38)°/* + o(8°/") 47

the two equalities at the far right-hand sides of (46) and (47) being a consequence of
the formulas on the bottom of |6, p 419] and of

Ty =7 + TI(%,B)IIE—' %TI,G+O(.83/2) (48)

The argument of -y is to be determined using the device developed after theorem 9.2.1
in [1]; this gives in the present case

v = 37531 + 0(8)). (49)

The variable transformation r(s) is used to bring the contribution to L, , from the
saddle points near 7, into the form

‘)m/G (r(s)) r'(s)exp[(— 1 s® 4+ v2s+ r)X?] ds (50)

where C, is a portion of the Airy contour given in [1, figure 2.5]. The minus sign
in (50) is due to the different orientations of 7(C;) and C near 7. It then follows
from the theory in [1] that the leading asymptotics of L, , is given as

O

L1a(X% )~ —exp(x7r) |20 i(7 X140+ ST a2 X)) ey

with

ao(@) = LG, (m) 7' (v) + G (7 ) 7/(—=v)] = 373/12e57/5 72 4 O(8) (52)

a;(a) = %lGa(m T(1)=Go(r )T (=] = (§+ ) 372875 +O(81/2),
(53)
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This then completes the analysis of L, ,
The analysis of L, , requires a much simpler appeal to the steepest descent

method for a saddle point near 7, = 1i. To that end we set
p 2 = 3k

F+(Taﬁ)= F+(T)+,BT (54)

and we let 7,(3) be the zero of Fi(r,3) near r,. Using the formulae F, (7)) =
-85, F{/(r,) = 6/57,, we find that

7(B) =1 — 287, + O(8%) (35)

while the steepest descent paths have directions £ + Q(5), —Lr 4+ O(8). Hence
we get

La(X?; 8) ~ S exp(¥70) 56)
where
] o j1/2 )
by(a) = E—THG 2(3)) IWI exp[57i + O(B)]
= g-l/23-3/1~ “exp(dwi+ Ixia) + O(H) (57
and
F (y(8),8) = —8i+ Lig - i + 0(8°). (58

This completes the analysis of L, ., and putting all results together we obtain ex-
pressions {11)—(13).

The author thanks Dr R B Paris, who independently noticed formula (6), for a fruitful
discussion on the subject of this letter.
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