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LElTER TO THE EDITOR 

On the asymptotics of some Pearcey-type integrals 

A J E M Janssen 
Phil ip Research laboratones Eindhaven, 5hCO JA Eindhoven, ?he Nethedands 

Received 29 February 1992 

Abslracl. In this letter we discuss the asymptotic tehaviour of the Pearcey-m integral 

m 

for -1 < a < E ,  where 3, is a Bessel function, as X + im, Y ked. as Y - CO. X 
ked. and as Y = P ( $ ! X ~ ) ~ / ~ ,  S - -m, p f ied .  The -se a = -; gives the classical 
P e a t y  integral whose asymptotin has been investigaled recenlly by Kaminski and Paris. 
In the case o( = 0. Ib(X, I”) as a function of Y > 0 represenls h e  radial pan of the 
impulse-response hnction describing the image formation in’ high resolution electron 
microscopes at normalized defocus S. We use Ihe approach:of Paris bj representing 
I L ( X , Y )  in terms of Webcr parabolic cylinder IuncLions, and we augment this approach 
by invoking the Chester-Friedman-Un;ell melhod to obtain the leading asytnptolics of 
I ; ( X ; Y )  around the clustic Y 2  = ,U - -m_ 

In [5, 61 the asymptotics of (the analytic continuation to complex variables of) the 
Pearcey integral 

m 

P ‘ ( S , Y )  = S / e x p ( i ( u 4  + S u ’ ) ) c o s Y u d u  (1) 
0 

is presented. The Pearcey integral occurs a t  many places in the physics literature, 
especially where a short-wavelength description of the phenomena is desired; we 
refer to [3, 5, 61 and the references therein for surveys of existing literature on 
Pearcey’s integral. In a recent study on the image formation in high resolution 
electron microscopes [4], an important role is played by the integral 

I ’ ( . x , Y )  = 2 exp(i(u“ + Su2)) , / , , (Yu)udi i  (2) 4 0 

where Jo is the Bessel function of order 0. Indccd, in the terminology of [4], I ‘ ( X ,  .) 
represents the radial part of the (undamped) impulse-response function at defocus 
X. Interestingly, in the hypothetical case of one-dimensional microscopy, the role of 
I ’ ( X , . )  would be taken Over by P’(.Y,.) in (I). 

0305470/92/130823+09$04.50 @ 1992 IOP Publishing I l d  L823 
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In this letter we are interested, more generally, in the asymptotia of the integral 

m 

I b ( X , Y )  = 2 / e x p ( i ( u 4  + X U ? ) ) J , ( Y Z L ) ~ ~ + ~  d u  (3) 
0 

with -1 < a < ;, where J,, is the Bessel function of order a. For a = 0 we obtain 
(Z), and we have 

P ‘ ( X , Y )  = J + a Y I ’ , / 2 ( X , Y ) .  (4) 

It turns out that we can mimic the arguments of Paris in [6] for obtaining the 
asymptotics of P ’ ( X , Y )  to a very large extent. explain this, we note that with 
z = Xexp(-arri), y = Y e x p ( i n i )  we have 

Here C is a loop starting and finishing at -CO and encircling the origin in positive 
sense, and D, is the (analytic continuation to all Y E C of the) parabolic cylinder 
function admitting Cor Re U < 1 the integral representation 

This enables us to derive the asymptotics of I * ( z , y )  when IzI + 03, y fixed and 
when IyI - m, z fixed. 

In [S] Kaminski determines the asymptotics of P ’ ( X , Y )  near the caustic Y z  = 
$1XI3, X -+ -CO, by using directly the integral representation (1) together with the 
method of Chester, Friedman and Ursell (CFLJ-method), see [l, ch 91 and [2], Cor the 
asymptotics of integrals with two nearly coalescing saddle points. The asymptotics 
of P ’ ( X , Y )  exactly at the caustic I’ = (ilXl)3/2, A’ -+ -CO, is also determined 
by Paris in [a, section 61, as a check of the validity of his integral representation 
approach. However, Cor our case, the direct method oC Kaminski is not applicable, 
and we must augment Paris’ arguments of [6, section 61; by an appeal to the CFU- 
method to obtain tne required asympioiics near the  caustic. Doing SO, we obtain 
the leading asymptotics Cor I & ( S , Y )  near the caustic (and not a full asymptotic 
expansion as Kaminski obtains for P‘( X, 1’)). 

We shall now present our main results, and thcn indicate how these results can be. 
proved by using Paris’ arguments and extensions thcreoC. Although we could present 
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the asymptotics of Ie(z,y) when IzI - CO or JyI - CO for general complex I, y oust 
as Paris does for his P(z,y)), we restrict to I = Sexp( -$Ti ) ,  y = Yexp(;ri)  
with real X and Y > 0. We thus get 

as X 4 +CO, Y > 0, and 
I 

as X - -m, Y > 0. Here Lpd is the (2m)th Laguerre polynomial of order a, 
see [7, section 5.11. (It is observed here that the function a m ( x )  in 16, (3.4)-(3.6)] 
equals (2  m) ! L$:/')( x).) 

Next we have when A' E R  is fured and W := iY -+ +m 
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and 

co = 3113 + O ( p )  c, = ( $  + oi)32/3 + O(p'") .  

In particular, we have at the caustic ( p  = 1; p = y = 0 )  

1 + ($ILYl)o/2-exp[$rri(oi 1x1 + I )  - ? j i ~ ~ ] .  (14) 

We shall next show that the representation (6) holds. lb that end we observe the 
formulae 

J , ( r )  = o ( ~ z ~ - ~ I ? e l ' ~ ~ ~ l  1 I argzl < rr, IzI - m (16) 

U - +m. (17) .I, (U), J;  (U), .I:( U) = O(  u-l/? 1 
It then follows that l b ( X , Y )  is well defined as an improper Riemann integral for 
-1 < a < 5, and that (5) holds (on substituting U = e * ' I d t  and using Jordan's 
lemma). Next we use (15) with z = y t ,  interchange sum and integral, substitute 
U = t 2  in the integral, and obtain 

Then we use (7) and the fact that r( 8 )  has poles ol order one at s = -k = 0, -1,. . . 
with residues (-l)k/k! to obtain (6). In (6) the contour C does not need to lie in 
Res < oi + 1, as would be the case when (7) were used, since D,( I) extends to an 
entire function of U. 

We next show how the asymptotic expansion (8) can be derived; note that 
arg(z) = - $ r r  since I = Sexp(- -$Ti ) ,  A' > 0. Proceeding in the same (formal) 
way as in [6, section 3(0)], we insert the expansion 

( s  - a - 1 ) .  . . ( s  - a - 2 n i )  
m! I?" 

( -1)"  - exp(-$z2)  
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Here 

1 
b,(x) = 3 1  x - " r ( s ) ( s -  a - 1 ) .  . .(s - OL - 2 m ) d s  

C 

L827 

From this (8) follows. 
Similarly, when 5 = X e x p ( - i n i ) ,  X < 0 (so that arg(s) = i x ) ,  we use 

together with (6), to obtain 

I,(z,y) = -exp(-qxia) lm(-z , iy)  

+ exp(;ri( a + 2 )  + ;z72-(3421-'/2 ?1"1,,,(X> ?1) 

where 

For the first term at the right-hand side of (23) we a n  use (8); for the second term 
we use (19). and obtain 

Here we have used that I-( --z + 1 ) = x( z + 1 ) . . . (x  + 2m - 1 ) r( -x - 2m + 1). 
Finally, (9) follows by taking E = y ( - $ x ) ' / '  in the identity 

We observe that the derivations just given can be shown to yield true asymptotic 
series by using the methods of 16, section 41; in fact, such a thing is implicitly stated in 
[6, middle of p 4221, about the asymptotics of P(" ) (x ,  y), i.e. the case that a = n+i. 

We next turn to the derivation of (IO). This can be done as in (6, section 51; we 
just show some intermediate steps. After replacing s - a - 1 by s - i in the integral 
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at the right-hand side of (6) (so that we can conveniently use [6, equation (5.2)]), we 
obtain as in [6] 

~ , ( x , y )  = e x p [ k n i ( a  + 2) + Qx2]zu+1/4 n-1/2y-0-1 

x { e x p ( - + ~ i ) l + , , ( ~ ,  Y) + e x p ( $ x i ) I - , , ( ~ . ~ ) ]  (27) 

where 

(28) 

Using [6, equation (5.2)] and the result 

With the aid of the lemma in [6, section 51, we then get 

I , ( + , Y )  = T+JZ?Y)  + T-,*(Z>Y) 
where, with w = $y, 
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We finally show the main steps in deriving (11). When we follow the steps (6.1)- 
(6.13) in [6], we get (Y = p1 /2 ($1 )3 /2 )  

Ib(X,Y) = e x p ( + a i ( a +  1)- iiX2]- ~ ) - 3 + / 2 - - 1 / 2  Y+u;,,(x,Y) + I ; , a ( x , y ) )  
(35) 

where 

x {exp($nir'C2) + e x p ( - ; T i r . p ) )  d r .  

f * ( r , P )  = f*(r) + P r  P = -$I11 P (38) 

(37) 

Here t = L31/2e-"i/4r-1/2, and 
4 

with f+ given in [6, (6.13)]. The main contributions to the above integrals come from 
saddle-points; these are (in the t-plane) among the roots of 

5 3  1 ( 4 1 ) 3 ( t * m ) = p - '  (39) 

so that 

; p ' ( ; t ) 6  - p t ( 4 2 ) 3  + 1 = 0. 

This equation has, for p close to 0, simple roots near 2 = . t $ i  and two pairs of nearly 
coalescing roots near t = i 3 / 2 f i ;  as in [6] only the roots near t = 3 / 2 6  (i.e. 

to the integrals. As a consequence, the leading asymptotics of I ; , ,  is determined by 
the integral 

7 = - L i  ) and the roots near 1 = -:i (i.e. T = f i )  yield saddle p in t s  contributing 
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with saddle point near T~ = Qi. 

(1, section 9.21 We write 
For L l , m  we must use the CFU method for which we follow the recipe given in 

L1, , (x2 ;  P ) =  G,(r )exp[X’F-(T,P) ]dr  (43) 
C 

with 

where F - ( r )  = f - ( r )  + 
variable transformation ~ ( s )  (with s close to 0) by 

as in [6, section 61. Next we introduce a regular 

(45) F_(r(s),P) = -4.3 + y ? s  + 1’ 

that should be such that r ( & y )  = T+, with T* the two zeros of F ’ ( r , p )  near 
then follows that 

It 

= f(F-(r+,P) + F-(r-,P)) = -47, + T , P -  &rlp’ + 0 ( P 5 / ’ )  (46) 

(47) ay3 = F ( r + , P )  - F-(r-,D) = g r l ( $ P ) 3 / 2  + o(P”’) 

r+ = T’ i T ~ ( + P ) ’ ~ ’  - Er,p + 0 ( 4 ~ / ~ ) .  

y = 3-’/3i(fP)1/2(1 + O ( p ) ) .  (49) 

the two equalities at the far right-hand sides of (46) and (47) being a consequence of 
the formulas on the bottom of [h, p 419) and of 

(48) 

The argument of y is to be determined using the device developed after theorem 92.1 
in [l]; this gives in the present case 

The variable transformation r(s) is used to bring the contribution to LI,* from the 
saddle points near rl into the  form 

where C, is a portion of the Airy contour given in [l, figure 2.51. The minus sign 
in (SO) is due to the different orientations of i (C1)  and C near r l .  I t  then follows 
from the theory in [ I ]  that the leading asymptotics of L l , a  is given as 
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This then completes the analysis of L1, - .  

method for a saddle point near r2 = k i .  'RI that end we set 
The analysis of LZ,* requires a much simpler appeal to the steepest descent 

F + ( r , p )  = F + ( r ) + p r  (54) 

and we let rz(P) be the zero of F i ( r , P )  near r2. Using the formulae F+(T,) = 
13 -_ r2, F;l(rz) = 6 / 5 r z ,  we find that 

rz(p) = 7, - gPrz + o(P)  (55) 

while the steepest descent paths have directions ;T + o(p), - + x  + O(p) .  Hence 
we get 

where 

- - x - ~ / * ~ - ' / ~ - o  exp($a i  + ;ria) + O ( P )  

U = F+(~ , (p ) ,p )  = -gi + sip - 5 .  2 + 0 ( p 3 ) .  

(57) 

and 

(58) 

This completes the analysis of L,, , ,  and putting all results together we obtain ex- 
pressions (11)-(13). 

The author thanks Dr R B Paris, who independently noticed formula (6), for a fruitful 
d&cus&m on the subject of this letter; 
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